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Abstract

A discussion of a reccnt significant tdvance in network synthesis theory is pre,-

sented. This "br.akthrough" was accompli.4hed by D. Hazony of the Case Institute

of Technology and by D.C. Youla of the Pol technic Institute of Brooklyn, who inde-

pendently of each other developed methods i.,r unifying the theory of two-port cas-

cade synthesis. Both methods ar( based on Richards' theorem, and both introduce

the gyrator artificially. Different methods of proof are used, however. A valuable

"cookbook recipe" was developed by Youla. Hazony managed to extend the method

to n-ports. In all, this epoch-making achievemcnt has resulted in an important,

simple, and beautiful method of network synthesis.
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An F.valuation of an Important Advance
in Network Synthesis Theory

I. INl'lBOi (I'ION

During the past five years, extraordinary theoretical advance has occurred in

network synthesis theory. In 1959, Dov Hazony, at the Case Institute of Technology,

Cleveland, Ohio, in a proposal to thu AFCPL Microwave Physics Laboratory out-

lined a research program for findir g a general synthesis method that would include

the methods by Brune, Darlington, and Bott and Duffin. This research was promptly

sponsored under Contract AF19(604)-3887. Very soon interesting results were ob-

tained by Hazony and his research group. The results were so general and so simple

as to merit the term "breakthrough".

It is an interesting coincidence that the first part of the theory was independently

developed by Prof. Dante C. Youla at the Polytechnic Institute of Brooklyn, also

under an AFCRL Microwave Physics Laboratory Contract AF19(604)-4143.

An attempt will be made in this report to present the basic ideas leading to and

continuing the exploitation of this advance. We begin by discussing a positive real

function and Richards' theorem.

(Received for publication 18 August 1964)
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2. POSITIVE IEAL FUNCTIONS

A complex function Z(s) is a positive real function, prf, if the following condi-

tions are fulfilled:

(a) Z(s) is real, if s is real;

(b) ReZ(s)-0 , if Res =0; and (0)

(c) Re Z(s) > 0 , if Re s > 0 .

Here, s = a + jw , where a* is a damping constant, w = 27rf , f is the frequency,

and s is a complex frequency function.

Alternatively we can say that Z(s) is a prf if:

(a) Z(s) is-real, if s is real;

(b) ReZ(s)>0, if Res= 0; ard

(c) Z(s) is analytic in the right half plane (that is, it has a derivative (2)

at each poirt of the right half plane); oles on the w axis are
simple with positive residues.

3. ilCiIAlRDg TI!EOIIE\!

1
Richards' theorem, found in 1947, is a form of Schwartz's lemma (known since

1869). It says:

"If Z(s) is a rational pjsitive real function (prf) with the numerator and the

denominator of the same degree, then

= kZ(s) - sZ(k) (3)Ri(s) = kZ(k) - sZ( )

is prf. " (k is a real number.)

Richards used k = 1, and later on Bott ind Duffin introduced the k. The proof

that Richards used is the following:

Let W = s-k (4)

s+k

and

f(w) = z(s) - Z (k) (5)Z(s) + Z(k)
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Then we can write Richards' formula (3)>

f(w) = - Ri(s) (6)
w 1+ Ri(s)

Now, Schwartz's lemma says: "Let the analytic function f(w) be analytic inside

the unit circle jw! = 1, and let f(O) = 0. If, in [wj <1, If(w)j< 1, then

~-2 <1 l wl<l.',-

The theorem can be used directly. Therefore,

Il - Ri(s)j< 11+ Ri(s)1,

so that Re Ri(s)>0, ifs > 0.

The otier conditions valid for a prf are easily checked. "'hus, Ri(s) is prf. Q. E. D.

Another proof of Richards' theorem, found by Hazony will be given later on.

4. ANALYSIS AND SYNTHESIS OF NETWORKS

If we apply a unit impulse, defined by 6(t) = 0, t # 0, and

00

j 6(t)dt = 1,

to the input of a two-port network having the transfer impedance function F(s), then

we obtain a signal f(t) at the output. The connection between F(s) and f(t) is given

by the Laplace transformation

Go

F(s) ff) e-st dt
0

(7)

ft W 1 fF(s) eSt doft -- 27j Ys

Figure 1 shows the analysis and synthesis of two-ports. The synthesis problerr can

be divided into two parts, the approximation part and the realization part. (See

Figure 2. ) A Laplace transformation is called LT; a star indicates an approximated

function.
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Analysis Synthesis

known known 2 known ? known

(a) ( b)

Figure 1. Analysis and Synthesis of Two-Ports

appr -sntf(t) -ar f(t) XA ne

LT I LT

F(s) appr. F (s)

transc. rat.

Figure 2. The Synthesis Problem

5. CII0i' ELE\IENTS

The circuit elements used are:
(a) resistance, r,

(b) inductance, L,
(c) capacitance, C,
(d) unity coupled transformer, T.

See Figure 3 where

L + T 2 Lp

11 2 pL 2 =M ;

L2 + L3 L s

M = 411 ; thereforeL L + L I 3 + L21 I 0.
P es 12 143 2 3

(e) gyrator (Tellegen, 1948).
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LI L M--,/L

L L

Figure 3. Unity Coupled Transformer. (L1 or L3 is negative.)

See Figure 4 where

V1 z 12 12

V2 = 12 1

I V

Figure 4. Gyrator

6. FOSTER (1924)

Foster' synthesized lossless one-ports by splitting the input impedance function

into partial fractions.

Example:

Z(s) 2s 2 +1

s(s 2+1)

A + B +1 _ s
s 2+1 s 2 + 2

1 1
S 4-

(See Figure 5. )
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Z (S)-- • T

Figure 5. Foster Network

7. AVEIll (1926)

Cauer 3 synthesized lossless one-ports by splitting the input impedance function

into continued fractions.

Example:

2s 2 +1 2s 2 +1Z(s)==

s(s2 +) s 3+s

1 1
s + s/2 s + 1

2 2s2+1 2 12s +1-

(See Figure 6.)

4

Figure 6. Cauer Network

8. IWRNE (1931)

Brune4 was the first to synthesize lossy networks. He found that a rational

positive real function (sometimes called a "Brune function") could be synthesized

by using resistances, inductances, capacitances, and unity coupled transformers.

Pr.ocedure (see Figure 7):
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Re Z (jw) r

Figure 7. Brune Cycle

(a) Re Z(jw) mi n  F ; Z(s) - F Z 1 (s)

(b) . Z 1 (jw) is reactive at P

(c) Zl(s) - sL 1 = Z 2 (s) ,

(d) Z 2 (s) has a zero at P

(e) Y2 (s) has a pole at P

(f) Y2 (s) - s L2 2  - Z 3 (s)

The function Z 3 (s) is not prf.

Excellent idea by Brune: L I , L 2 , and L 3 form a unity coupled transformer.

(g) Z3 (s) + sL 3 = c(s)

The function t(s) is prf and has the degrees of its numerator and denominator

lowered by two compared with Z(s).

9. IAIINGTON (1939)

Darlington 5 also studied lossy networks. He found that any prf Z(s) function

could be synthesized by a loss:ess two-port terminated in a resistance usually

selected to be one ohm. See Figure 8, where



1 Z1 Z 122

V2 1 12 1i + z (8)

V2  - 12

II 12

LosslessI
Z (s)- j 2j- port V " i (s)

Figure 8. Darlington Synthesis

From Eq. (8) we get

Z(s) V - Z1 + ZllZ22 Z 1 2 z21 (9)Z 1s 1 ti + z 22

Reciprocal networks have z12 = z 2 1 . Darlington compared Eq. (9) with Z(s)

written as

Z(s) = m1 + 1 (10)
m 2 + n2

whe' e m and n are even and odd parts. Thus, he obtained zll, z 1 2 , and z 2 2 .

Frm these va~ues four different types of networks could be extracted, called A,

B, C, and D networks by Darlington. (See Figure 9. ) A difficulty may appear in

that z 12 can be irrational. In such a case Darlington multiplied the numerator and

the denominator of Z(s) by a surplus factor.

10. IBOTT ANI) I}I'FFIN (19,19)

Bott and Duffin 6 were the first to synthesize a lossy network without the use of

a unity coupled transformer. They based their method on Richards' theorem. A

simplified treatment has been given by Hazony. 7, 8 He splits Z(s) as follows:



~+,
A. S

B. L- D.

-M

Figure 9. Darlington Networks

Z(s) k kkZ(s) - sZ(k) + s kZ(k) - sZ(s)k 2k22k 2  s 2

z 1I(S, + Z2 (s)

The function Z(s) is prf.

(a) Z 1 (s) is real, if s is real,

(b) Re Zl(jw) k2 k2 Re Z(jw)

therefore Re Z 1 (s) > 0 , if s = 0

(c) Z1 (s) is analytic in the right half plane.

Thus, ZI(s) is prf according to Eq. (2). Similarly, Z2 (s) is prf.

When

S kZ(k)
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Therefore Zl(s) 1 _ Z(k) (12)
1 +S kZ(k)-sZ(s) + s

A + kZ(k- kZ(s)-sZ(k) k

Z(k) (3
ZlS I- + s (13)

Ri(s) k

Thus, Ri(s) is prf, which proves Richards' theorem. Similarly,

Z2 (s) = Zk) (14)
Ri(s) + -

From Eqs. (ll),(13).and (14), Z(s) can be synthesized by the network shown in

Figure 10. This is the network found by Bott and Duffin. It is a balanced bridge

(first described by Reza 9), because

k. Z(k) sZ(k) = Z 2 (k)
s k

and

Z(k) Ri(s) Z(k' = Z2(k)
Ri(s)

k Z(k) Z(k) Ri(s)

Ri (s) V k

Figure 10. Bott-Duffin Balanced Bridge

The procedure that Bott and Duffin used in order to reduce Ri(s) is the following:

(a) Z(s) was made minimum resistive by subtraction of a resistance r (as

in the Brune procedure);

(b) Therefore Z (jw o ) jW0 L (at a specific w 0 > 0 for example)

(c) let k = )
L '
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(d) for this k, Ri(jw o ) 0

(e) therefore, Ri(s) has a zero on the imaginary axis and the degree can

be lowered by means of the Foster method. (See Figure 11. )
1

(f) has a pole on the imaginary axis and can be reduced in a similar

way.

0

Figure 11. Bott-Duffin Network

The Bott and Duffin method does riot make use of unity coupled transformers.

The price they paid consisted in the fact that the method required many circuit

elements. In the beginning the method was not very well understood. In order to

get fewer elements Reza, 9 Pantell, 10 and Fialkow and Gerst 1 1 studied the Bott

and Duffin method thoroughly and managed to find unbalanced bridge circuits that

all had one element less than Bott and Duffin's balanced bridge. Reza 9 and Storer 1 2

showed, however, that the work of deriving these unbalanced bridges could be sim-

plified to a high degree by inserting a specific impedance at A in Figure 10 and then

applying a Y - A transformation.

11. FIALKOW AND GERST (1955)

Both the Brune and the Bott-Duffin methods are based on the fact that Z(s) first

is made minimum resistive. This is usually a rather complicated procedure. It

was therefore a big advantage when Fialkow and Gerst 1 3 developed a method that

does not require any minimum resistive Z(s). The reasoning is the following:8

Both the numerator and the denominator in the Richards' function

Ri(s) = kZ(s) sZ(k) (3)k Z~ W s Z(s)



12

are zero for s r k, therefore s - k can be cancelled. If there is any other factor

s - k0, which can be cancelled, then

kZ(k - k Z(k) = 0
and

kZ(k) -k 0Z(k o ) = 0

which means that (with corresponding signs),

k =+k
0

and

Z(k o ) 0 Z(k)

We already know k +k, but k = -k yields

Z(k )+ Z (-k) = 0
or

Ev Z(k) = 0 (15)

This was already known by Richards when he wrote his original article. Thus,

instead of the complicated minimization procedure used by Bott and Duffin, Fialkou

and Gerst used Eq. (15). Real values of k led to balanced bridges. For complex
0

ko these authors ran into difficulties. The following procedure was developed:

Let k° = a+ jb ; Z(k) = A + jB.

_Z(0) 2 Z()Ad 2+-+~ - j tan- 1i B/A

When k = 0: Ri(s) Z(O)l eBn 3

1. =co: Ri(s) = A = A+B j tan - I B/A
Z (oD) Z(c))

This means that Ri(s) is real for a specific k . A balanced bridge was obtained

in which the degrees of the resulting impedances were unchanged. The procedure

was then repeated for ko = a + lb , and another bridge was obtained with reduced

degrees of the resulting impedance. The quite complicated method led to a series

of iterated bridges. Many circuit elements were required.
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!2. IIAZONY (1959) AND YOI,,A (1961)

In 1959 Ilazony 1 4 , 15 obtained a new and basic insight: Why not use Richards'

theorem twice when Ev Z(s) = 0 had a complex root: first for k 1 = a + jb , and

then for k2 = a - jb . This led to a generalization of Richards' theorem. Thus,

the following cases were obtained:

(a) k real. Yields a balanced bridge as shown above. The network was sim-16
plified in cascade representation by -lazony and Ichott. They used a gyrator as

shown in Figure 12. If k satisfies Ev Z(s) = 0 , the degrees of the numerator

and the denomirator are lowered by one.

(b) k complex. k1  a+ jb ; k 2  a - jb

(1 +s2 A Z(s) - Z(a) Z (b)R) (S Za s - abB (6

Z W)

Z (s)- k0Zk)(S sZ " Z(k) R i (s)

Figure 12. Cascade Representation of Balanced Bridge

where A aZ(b) - bZ(a)
2 b2

B aZ(a) - bZ(b)
a2 b 2

a -b

The network, Figure 13, was obtained by a Darlington type synthesis. 8, 17 if

k1 and k2 satisfy Bv Z(s) = 0 , the degrees of the numerator and the denomina-

tor are lowered by two.
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(a +b)A

s , BA2 R1  S)
Z(s)- BIs B

a bA

Figure 13. Network Obtained by Applying Richards' Theorem Twice

(c) k imaginary. k1 
= jb ; k2 

= -jb . The gyrator is eliminated. Z(s) is

minimum resistive. A Brune network is obtained by using l'I-ospital's rule:.

A j w o Z(j Wo)- Z(j o)

j o Z'(jwo ) + Z(j 0 o)

(See Figure 14.) If k1 and k2 satisfy Ev Z(s) = 0 , the degrees of the numerator

and the denominator are lowered by two.

The method of using Richards' theorem and the gyrator artificially as an inter-

mediate F ep has also been worked out by Youla. 18 Youla adds to the usefulness of

the method by giving a ''cookbook" for the different cases so that more complicated

networks can be calculated by computers.

The gyrator is a highly idealized circuit element and it can be eliminated by

repeating the method using the same k-values. If (a) k is real, Darlington's C

network is obtained, and if (b) k is complex, Darlington's D network is obtained. 19,20

(See Figure 15.) If k1 and k2 are double roots of Ev Z(s) = 0 , the degrees of

the numerator and the denominator are lowered by two in the Brune case, by four

in the D network case, and by two in the C network case.

13. GENERALIZATION TO N-P'ORTS

In 1961 Hazony and Nain 2 l extended the above results to n-ports by considering

positive real matrix functions instead of scalar functions. So, for example, Eq. (11)

was generalized to



IZ(s)I k. k[ Z(s)] - si 7,(k)) + q.k[ Z(k) -si Z(s)J
k2 2 S 2 k2 2

Z 1 (s)l + [ Z2 (s)J - (17)

A pr matrix is defined in the following way:8

(a) I Z(s)] is an n by n symmetric matrix.

(b) The matrix element Zp is a rational function of s with real coefficients.

(c) For any choice of real numbers n1 , n 2 . n the associate function Z(s)

defined by the follo% ing equation is prf:

j wo z (jW0) -ZOjWo)

2 j w2

z( j Wo) + Z (j Wo) S iW , W)- OW

s2 j wo 2 jw0 Ij wo z'(jw0) + Z jWo)

NO. jz0 ) 2s (jw0Z'(jw0)

Figure 14. Brune Network

j W s- plane

yields yed ewr
Brune . yed ewr
net work yed ewr

Figure 15. Positions of Roots of Ev Z(s) =0 in the s-plane
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n n
Z (s)E [ NJ

I I pq p q t

with [ NI being a column matrix.

The generalized Richards' theorem is as follows:

If [ Z(s)I is a pr matrix, then

[ Ri(s)] = [ Z(k)] (k[ Z(k)l -s[ Z(s) )-'(kt Z(s)-s[ Z(k)i) . (18)

is a pr matrix. Synthesis through the matrix Richards' transformation has been

performed by the team consisting of E. K. Boyce, R. V. Duffin, H. V. Nain, ard

D. Hazony. (See Refe -ence 8. ) In this work, Ev Z(s) - 0 is replaced by

det Ev [ Z(s)I = 0 .
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